关闭
 
读者在线:用户名 密码
首页 期刊简介 投稿须知 期刊目录 专家风采 编委会 特邀顾问 联系我们 移动出版
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5



刊物信息

期刊名称:药物分析杂志
主管单位:中国科学技术协会
主办单位:中国药学会
承办:中国食品药品检定研究院
主编:金少鸿
地址:北京天坛西里2号
邮政编码:100050
电话:010-67012819,67058427
电子邮箱:ywfx@nicpbp.org.cn
国际标准刊号:ISSN 0254-1793
国内统一刊号:CN 11-2224/R
邮发代号:2-237
 

访问统计
您是第  2 7 7 6 3 3 2 位浏览者
您当前的位置:首页 >> 正文

硫酸卡那霉素及注射液有关物质高温型及低温型蒸发光检测器方法建立及比对

Establishment and comparison of related substance analysis in kanamycin sulfate and its injection by HPLC-ELSD (high TEMP/low TEMP)

作者(英文):
分类号:R917
出版年·卷·期(页码):2018,38 (9):1530-1538
DOI: 10.16155/j.0254-1793.2017.01.01
-----摘要:-------------------------------------------------------------------------------------------

目的:建立硫酸卡那霉素及注射液有关物质高温型及低温型蒸发光检测器方法并进行结果比对。方法:高温型蒸发光检测器方法为采用Waters XSelect® HSS T3(5 μm,4.6 mm×250 mm)色谱柱,以0.2 mol·L-1三氟醋酸溶液为流动相,流速0.3 mL·min-1,柱温30℃;蒸发光散射检测器漂移管温度110℃,载气流量2.5 L·min-1。低温型蒸发光检测器方法为采用Agilent ZORBAX SB-C18(5 μm,4.6 mm×250 mm)色谱柱,以0.2 mol·L-1三氟醋酸溶液-甲醇(98∶2)为流动相,流速0.3 mL·min-1,柱温30℃;蒸发光散射检测器漂移管温度65℃,喷雾器比率40%,压力0.207 MPa。结果:采用高温型蒸发光检测器,线性范围为0.003~0.12 mg·mL-1r=0.999 6),检测下限和定量下限分别为0.031 μg和0.062 μg;采用低温型蒸发光检测器,线性范围为0.003~0.12 mg·mL-1r=0.999 1),检测下限和定量下限分别为0.022 μg和0.051 μg。2种方法的专属性,流动相比例和色谱柱的耐用性均符合要求。4批硫酸卡那霉素和6批注射液的检测结果比对表明卡那霉素B的检测结果差异不大,其他单个杂质和杂质总量低温型检测器检测结果均高于高温型检测器。结论:本文建立的2种有关物质检测方法均适用于硫酸卡霉素及其注射液的有关物质检查,低温型检测器的最大杂质为相对保留时间约为0.85的未知杂质,高温型检测器的最大杂质也为主峰前杂质,但与其他杂质峰的未达到基线分离。对杂质的分离能力,低温型检测器更有优势。同时,低温型检测器杂质检出量和检出个数均优于高温型检测器,2种方法的建立为进一步制定合理限度进行有关物质控制以及杂质解析奠定了研究基础。

-----英文摘要:---------------------------------------------------------------------------------------

Objective: To establish and compare two HPLC-ELSD[high temperature (high TEMP)/low temperature] (low TEMP)methods for related substance analysis in kanamycin sulfate and its injection. Methods: For the HPLC-ELSD (high TEMP) method, a Waters XSelect® HSS T3 (5 μm, 4.6 mm×250 mm) was used as chromatographic column at the column temperature of 30, 0.2 mol·L-1 trifluoroacetic acid solution was used as the mobile phase at a flow rate of 0.3 mL·min-1;the temperature of ELSD drift tube was set at 110℃, and the carrier gas flow was 2.5 L·min-1. For the HPLC-ELSD (low TEMP) method, an Agilent ZORBAX SB-C18 (5 μm, 4.6 mm×250 mm) was used as chromatographic column at the column temperature of 30, a mixture of 0.2 mol·L-1 trifluoroacetic acid solution-methyl alcohol (98:2) was used as the mobile phase at a flow rate of 0.3 mL·min-1;the temperature of ELSD drift tube was set at 65℃, the spray ratio was 40%, and the pressure was 0.207 MPa. Results: For the HPLC-ELSD (high TEMP) method, it reflected a good linearity in the range of 0.003-0.12 mg·mL-1 (r=0.999 6), and the LOD and LOQ were 0.031μg and 0.062 μg, respectively. For the HPLC-ELSD (low TEMP) method, it reflected a good linearity in the range of 0.003-0.12 mg·mL-1 (r=0.999 1), and the LOD and LOQ were 0.022 μg and 0.051 μg, respectively. The specificity, mobile phase ratio, and chromatographic column durability of the two methods all met the requirements. The detection results of four batches of kanamycin sulfate and six batches of kanamycin sulfate injection showed that the difference between detection results of kanamycin B was small. However, for other single impurities and the impurity amount, the detection results of HPLC-ELSD (low TEMP) method were all higher than those of HPLC-ELSD (high TEMP) method. Conclusion: The two methods established in this paper are both appropriate for the detection of related substance in kanamycin sulfate and its injection. The impurity separation effect of HPLC-ELSD (low TEMP) method is better than that of HPLC-ELSD (high TEMP) method. The biggest impurity of HPLC-ELSD (low TEMP) is the unknown impurity with a relative retention time of 0.85. The biggest impurity of HPLC-ELSD (high TEMP) is also the impurity before the main peak, which doesn't reach the baseline separation with peaks of other impurities. The quantity and number of impurities detected by HPLC-ELSD (low TEMP) method are superior to or more than those of impurities detected by HPLC-ELSD (high TEMP) method. This paper will lay a foundation for further establishment of a reasonable limit for impurity control and analysis.

-----参考文献:---------------------------------------------------------------------------------------
[1] 于治国,王桂花,魏红.高效液相色谱法测定血清及尿中卡那霉素含量[J].沈阳药学院学报,1989,6(2):109 YU ZG,WANG GH,WEI H.High-performace liquid chromatographic assay of kanamycin in serum and urine[J].J Shenyang Coll Pharm,1989,6(2):109
[2] 鞠建刚,杜迎彬.注射用硫酸卡那霉素有关物质分析方法研究[J].山东化工,2015,44(17):82 JU JG,DU YB.Research of analytical method of related substances in kanamycin sulfate for injection[J].Shandong Chem Ind,2015,44(17):82
[3] 李玉林,陈真文,周玲,等.硫酸卡那霉素注射液中有关物质测定方法研究[J].中国药业,2011,20(10):41 LI YL,CHEN ZW,ZHOU L,et al.Determination of related substances in kanamycin sulfate injection by HPLC-ELSD[J].China Pharm,2011,20(10):41
[4] 王建.硫酸卡那霉素及其注射液的HPLC衍生化测定[J].中国医药工业杂志,1995,26(3):120 WANG J.HPLC derivatization determination of kanamycin and its injection[J].Chin J Pharm,1995,26(3):120
[5] 中华人民共和国药典2015年版.二部[S].2015:1316 ChP 2015.Vol Ⅱ[S].2015:1316
[6] 侯曦凡,夏焕章.HPLC-ELSD法分析中间体中妥布霉素含量及其主要杂质卡那霉素B[J].药物分析杂志,2009,29(7):1138 HOU XF,XIA HZ.HPLC-ELSD determination of intermediate tobramycin and its main impurities kanamycin B[J].Chin J Pharm Anal,2009,29(7):1138
[7] 李予雯,钟洪兰,刘思佳,等.高效液相色谱法-串联质谱法检测3种氨基糖苷类抗结核药[J].现代医院,2016,16(6):851 LI YW,ZHONG HL,LIU SJ,et al.Determination of three aminoglycoside anti-tuberculosis durgs using high performance liquid chromatography-tandem mass spectrometry[J].Mod Hosp J,2016,16(6):851
[8] 王金凤,杨化新,朱俐,等.HPLC-NQAD和HPLC-ELSD法测定硫酸卡那霉素注射剂的含量[J].药物分析杂志,2014,34(4):644 WANG JF,YANG HX,ZHU L,et al.Determination of kanamycin sulfate injection by HPLC-NQAD and HPLC-ELSD[J].Chin J Pharm Anal,2014,34(4):644
[9] 蔡春燕,杨芳,闫爱国,等.UPLC-MS/MS法同时检测饲料中5种氨基糖苷类抗生素[J].广东化工,2014,41(10):144 CAI CY,YANG F,YAN AG,et al.Determination of five aminogly coside antibiotics in fodder by UPLC-MS/MS[J].Guangdong Chem,2014,41(10):144
[10] 薛晶,崔学文,胡昌勤.HPLC法测定人用皮卡狂犬病疫苗和皮卡佐剂中硫酸卡那霉素的含量[J].药物分析杂志,2011,31(10):1911 XUE J,CUI XW,HU CQ.HPLC determination of kanamycin sulfate in PIKA rabies vaccine for human use and PIKA adjuvant[J].Chin J Pharm Anal,2011,31(10):1911
[11] 张明媛,常靓,刘长海,等.柱前衍生化高效液相色谱法检测硫酸阿米卡星注射液中卡那霉素含量的改进[J].药学实践杂志,2013,31(5):343 ZHANG MY,CHANG L,LIU CH et al.An improvement method of pre-column derivatization LC-UV for assaying kanamycin in amikacin sulfate injection[J].J Pharml Pract,2013,31(5):343
[12] 姜皓然,李祥鹏,玄光善.柱前衍生化HPLC检测硫酸卡那霉素的方法研究[J].海峡药学,2009,21(7):85 JIANG HR,LI XP,XUAN GS.Studies of kanamycin sulfate determination method by HPLC with pre-column derivatization[J].Strait Pharm J,2009,21(7):85
[13] 张凤妹,王建.HPLC-电喷雾检测器测定硫酸阿米卡星中卡那霉素和硫酸盐的含量[J].中国抗生素杂志,2015,40(5):354 ZHANG FM,WANG J.The determination of HPLC method for the kanamycin and sulfate in amikacin sulfate using charged aerosol detector[J].Chin J Antibiot,2015,40(5):354
[14] 习玲玲,朱岩.液相色谱-脉冲安培电化学法测定硫酸卡那霉素中各组分含量[J].分析化学,2007,35(5):703 XI LL,ZHU Y.Determination of kanamycin sulfate by liquid chromatography with pulsed amperametric detection[J].Chin J Anal Chem,2007,35(5):703
[15] USP 39-NF 34[S].2016:4456
[16] EP.8.0[S].2014:2563
[17] BP 2016Ⅱ[S].2016:43
[18] JP 16[S].2011:1002

欢迎阅读《药物分析杂志》!您是该文第 97位读者!

药物分析杂志 © 2009
地址:北京天坛西里2号
邮政编码:100050; 技术支持:010-60213898

电子邮件:ywfx@nicpbp.org.cn